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Clinical Treatment for Depression
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Objective: Cognitive bias modification (CBM) eliminates cognitive biases toward negative information
and is efficacious in reducing depression recurrence, but the mechanisms behind the bias elimination are
not fully understood. The present study investigated, through computer simulation of neural network
models, the neural dynamics underlying the use of CBM in eliminating the negative biases in the way
that depressed patients evaluate facial expressions. Method: We investigated 2 new CBM methodologies
using biologically plausible synaptic learning mechanisms—continuous transformation learning and
trace learning—which guide learning by exploiting either the spatial or temporal continuity between
visual stimuli presented during training. We first describe simulations with a simplified 1-layer neural
network, and then we describe simulations in a biologically detailed multilayer neural network model of
the ventral visual pathway. Results: After training with either the continuous transformation learning rule
or the trace learning rule, the 1-layer neural network eliminated biases in interpreting neutral stimuli as
sad. The multilayer neural network trained with realistic face stimuli was also shown to be able to use
continuous transformation learning or trace learning to reduce biases in the interpretation of neutral
stimuli. Conclusions: The simulation results suggest 2 biologically plausible synaptic learning mecha-
nisms, continuous transformation learning and trace learning, that may subserve CBM. The results are
highly informative for the development of experimental protocols to produce optimal CBM training

methodologies with human participants.

What is the public health significance of this article?

Cognitive bias modification (CBM) is a clinical technique aimed at reducing the negative cognitive
biases seen in clinical disorders such as anxiety and depression. However, many CBM methodologies
fail to adequately alter biases and therefore produce no clinical effect, leading to concern about the
treatment’s efficacy. This study uses computational modeling to present potential explanations at the
neuronal and synaptic level for how a shift in interpretational bias might occur through CBM training.
Such an understanding will have a wide impact in helping to guide future research aimed at
optimizing the effectiveness of CBM treatments.

Keywords: depression, cognitive bias modification, visual processing of facial expression, neural network

modeling

Depression is the most common mental health problem, affect-
ing 8%—12% of the adult population (Ustiin, Ayuso-Mateos, Chat-
terji, Mathers, & Murray, 2004). It can lead to a significant
reduction in the quality of life for sufferers and in extreme cases
may lead to suicide. It has been related to a number of chronic
diseases such as coronary heart disease (Rugulies, 2002; Schneider
& Moyer, 2010) and has damaging long-term effects on health and
well-being. People with anxiety disorder also experience various
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symptoms similar to those of depression, and both mental health
disorders often place a significant burden on psychiatric health
services and impact negatively on the economy due to reduced
productivity (Greenberg et al., 1999; Hoffman, Dukes, &
Wittchen, 2008; Ustiin et al., 2004). Similarly, the latest World
Health Organization report shows that anxiety and depression lead
to a loss of millions of work days (S. Jones, 2016). Consequently,
it is of huge importance to discover new, more effective treatments
for such mental disorders.

One of the common findings in both clinical depression and anxiety
is a link to cognitive biases in processing toward emotionally negative
information, with patients tending to pay attention to negative stimuli,
interpret events negatively, and recall negative memories (Mathews &
MacLeod, 2005; Roiser, Elliott, & Sahakian, 2012). These biases
therefore have been included within cognitive models of depression
(Beck, 2008) and anxiety (Mathews & MacLeod, 2005), leading to a
growing interest in exploring the causal relationship between these
biases, mood states, and clinical symptoms.
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Cognitive Bias Modification (CBM)

It is thought that the elimination of negative cognitive biases
may help to shift the depressed mood state of a patient and reduce
anxiety. This led many researchers to recognize the clinical po-
tential of these tools, inspiring the development of a family of
potential treatments known as cognitive bias modification (CBM;
MacLeod, 2012; MacLeod & Mathews, 2012). CBM seeks to
eliminate these underlying processing biases through three main
varieties of treatment. For example, CBM-Attention (CBM-A),
which is also referred to as attentional bias modification, seeks to
shift the attention of subjects away from negative stimuli in the
environment (Hakamata et al., 2010; MacLeod, Rutherford, Camp-
bell, Ebsworthy, & Holker, 2002), CBM-Interpretation (CBM-I)
aims to reduce the tendency for negative interpretation of events
(Grey & Mathews, 2000, 2009), and CBM-Memory (CBM-M)
seeks to reduce the recall and influence of negative memories
(Anderson & Green, 2001; Joormann, Hertel, Brozovich, & Gotlib,
2005). However, CBM as a whole is not without controversy. Most
CBM studies so far have focused on CBM-A, with a number of
meta-analyses finding the efficacy of CBM-A inconclusive (Cris-
tea, Kok, & Cuijpers, 2015; Hallion & Ruscio, 2011; Mogoase,
David, & Koster, 2014). CBM-I, on the other hand, has had more
promising results (Cristea et al., 2015; Hallion & Ruscio, 2011;
Menne-Lothmann et al., 2014).

The negative interpretation bias of facial expression (Bourke,
Douglas, & Porter, 2010; Richards, French, Calder, Webb, & Fox,
2002; Surcinelli, Codispoti, Montebarocci, Rossi, & Baldaro,
2006) is one of the examples of clinical disorders where CBM-I
intervention can produce a measurable therapeutic outcome
(Penton-Voak et al., 2013). In this study, faces were morphed from
unambiguously happy to unambiguously angry to give 15 total
stimuli. Participants were asked to rate each randomly presented
face as either happy or angry, giving a baseline for each partici-
pant’s emotion recognition along the spectrum of morphs. A
balance point at which participants switched from a categorization
of happy to a categorization of angry was therefore determined. A
CBM training procedure followed in which the previous procedure
was repeated, but participants were also given feedback about
whether their decision was “correct” or “incorrect.” Correct re-
sponses were defined as the responses they had previously given in
the baseline phase but with the balance point shifted so that two
more faces should now be classified as happy. A final testing phase
showed that feedback had shifted participants’ balance point in the
direction of training.

Nevertheless, it has been less than two decades since the seminal
CBM studies, meaning the field is still in its early stages (Grey &
Mathews, 2000; MacLeod et al., 2002). A recent commentary
described the problem with current CBM research as a lack of
focus on reliably changing the underlying cognitive biases (Fox,
Mackintosh, & Holmes, 2014). Fox et al. (2014) argued that the
theoretical assumption behind CBM is the role of negative biases
in maintaining clinical symptoms. Indeed, a study working from
the same premise found that when a bias change is achieved, so is
the change in clinical symptom (Clarke, Notebaert, & MacLeod,
2014). This implies that there is a necessity to successfully change
the bias in the first place to investigate the clinical benefit of CBM.
However, a number of studies have concluded that CBM does not
work, despite never successfully changing the bias, in both CBM-I

(Micco, Henin, & Hirshfeld-Becker, 2014) and CBM-A (Arditte &
Joormann, 2014; Enock, Hofmann, & McNally, 2014). Therefore,
it is of crucial importance to investigate the mechanisms behind
changing cognitive biases to optimize bias-change procedures,
which we do in the current study.

Theory and Modeling Study

Mathews and Mackintosh (1998) proposed that the negative
interpretative biases of emotionally ambiguous expressions in
high-trait anxious patients can be explained in the context of the
theory of “biased competition.” The theory of biased competition
maintains that any enhancement of attention-related neuronal re-
sponses is due to competition among all of the stimuli concurrently
displayed in the visual field (Desimone, 1998; Desimone & Dun-
can, 1995; Desimone, Wessinger, Thomas, & Schneider, 1990).
More precisely, the multiple stimuli in the visual field activate
cortical neurons that mutually inhibit one another through com-
petitive interactions. At the same time, there are top-down atten-
tional signals from outside the visual cortex. These also influence
cortical activity, such that the cells representing the attended
stimulus “win” the competition (Deco & Rolls, 2005; Duncan &
Humphreys, 1989). In Mathews and Mackintosh (1998), the “com-
petition” is between alternate interpretations of emotionally am-
biguous stimuli (e.g., sad and happy), with the outcome influenced
by a top-down threat-detecting signal from the amygdala and a
cognitive control signal from the rostral anterior cingulate cortex
(rACC) and lateral prefrontal cortex (LPFC; Bishop, 2007).

Although this is one of the biologically reasonable accounts of
the mechanism of such biases, West, Anderson, Ferber, and Pratt
(2011) recently reported that biased competition may begin as
early as the primary visual cortex, and affective prioritization can
be solely driven by physical salience of the low-level features in
emotional faces themselves. This implies that some degree of
prioritized social signals that are already represented in the earlier
visual cortex may underlie subsequent discrimination between
different emotions. From a theoretical perspective, we believe it is
also possible to develop training procedures to achieve CBM-I by
modifying the synaptic connections between neurons to adjust the
flow of electrical signals in the earlier cortical areas that carry
information about affective representation. Therefore, the main
aim of the current study was to investigate the theoretical “front
end” of the competition account—before top-down signals from
the amygdala-prefrontal circuitry in the later biased competition
kick in—to provide deeper insight into a more accurate account
that guides the development of more effective CBM-I training
procedures.

Computational modeling is one useful way to investigate such
mechanisms. The current study investigates the potential mecha-
nisms of CBM-I through neural network computer modeling to
understand how CBM might be achieved from a neurobiological
perspective. More precisely, we investigated the underlying plas-
ticity mechanisms and emergent neural dynamics using competitive
neural networks, which are unsupervised in that no given activity
pattern is imposed on the output neurons during training. In other
words, the learning in our model is solely guided by suitable input
patterns. A typical CBM-I training procedure involves “active train-
ing,” where a kind of feedback is provided to the participants to
modulate their cognitive bias (Hoppitt, Mathews, Yiend, & Mackin-
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tosh, 2010). On the other hand, the procedure presented here
describes a method of removing the bias without requiring any
such feedback. We present here a set of carefully designed se-
quences of visual images that achieve the synaptic rewiring that
may enhance the effectiveness of the ordinal CBM-I interventions
with or without active training at the later stage of the processing.

In particular, we present computer simulations to explore two
possible CBM-I training methodologies for rewriting previ-
ously learned associations. We refer to the work of Bourke et al.
(2010), aiming to change a negative interpretation of facial
expressions into a positive interpretation. To achieve such
learning without any explicit teaching signal, the new CBM
methodologies utilize two previously established biologically
plausible synaptic learning mechanisms known as continuous
transformation (CT) learning (Stringer, Perry, Rolls, & Proske,
2006) and trace learning (Foldiak, 1991; Wallis & Rolls, 1997).
These learning mechanisms are able to guide visual development
by exploiting either the spatial continuity or temporal continuity
between visual stimuli presented during training. We aimed to
explore whether both of these learning mechanisms, when com-
bined with carefully designed sequences of transforming face
images presented to the model, will eliminate negative biases in
the interpretation of facial expression, which could potentially
offer a low-cost and noninvasive treatment, particularly if used in
combination with other therapies (e.g., cognitive behavioral ther-
apy [CBTY).

Continuous Transformation Learning

It has been reported that people learn to associate visually
similar images together. In an experimental study, Preminger,
Sagi, and Tsodyks (2007) trained participants to classify faces into
two categories: friends (F) and nonfriends (NF). Upon reaching
good performance, participants were then trained with a sequence
of morphed images from F to NF. Participants were tested on how
they classified the morphed images. Initially, the first half of the
morphed image sequence was classified as F, whereas the second
half of the morphed sequence was classified as NF. However, as
training progressed, the separation threshold moved toward NF;
that is, an increasing number of frames were classified as F.
Eventually, all morphed frames were classified as F.

Continuous transformation (CT) learning is an invariance learn-
ing mechanism that may provide an insight into the mechanism of
such memory reconstruction via ordinary Hebbian learning at the
neuronal level (Stringer et al., 2006). It associatively remaps the
feedforward connections between successive neural layers while
keeping the same initial set of output neurons activated as the input
patterns are gradually changed. Consider a set of stimuli that can
be arranged into a continuum, in which each successive stimulus in
the continuum has a degree of overlap—a number of features in
common—with the previous stimulus in the continuum. CT learn-
ing can exploit this feature overlap between successive stimuli to
form a single percept of all, or at least a large subset, of the stimuli
in the stimulus set.

Specifically, when an output neuron responds to one of the input
patterns, the feedforward connections from the active input neu-
rons to the active output neuron are strengthened by associative
(Hebbian) learning. Then, when the next similar (overlapping)
input pattern is presented, the same output neuron is again acti-

vated due to the previously strengthened connections. Now the
second input pattern is associated with the same output neuron
through further associative learning. This process can continue to
map a sequence of many gradually transforming input patterns,
where each input pattern has a degree of spatial overlap with its
neighbors, onto the same output neuron. The standard Hebbian
learning rule used to modify the feedforward synaptic connections
at each time step T is

dwy; = krirf, (1)

where 77 is the firing rate of input neuron j at time 7, 7 is the firing rate
of output neuron i at time 7, w}; is the change in the synaptic weight
wj; from input neuron j to output neuron 7 at time 7, and k is a constant
called the learning rate that governs the amount of synaptic weight
change.

To prevent the same few neurons always winning the competi-
tion, the synaptic weight vector of each output neuron i is renor-
malized to unit length after each learning update for each training

pattern by setting
\/ﬁ - 1. 2
J

Neurophysiological evidence for synaptic weight normalization
has been described by Royer and Paré (2003).

We hypothesized that this CT learning will eliminate negative
biases in the interpretation of facial expression when combined
with carefully designed sequences of transforming face images
presented to the model. In particular, we exploited the remapping
capabilities of CT learning by morphing very happy faces, which
are associated with a positive output representation, into neutral
faces during training. This may cause the strong efferent connec-
tions from the neutral faces to be remapped to the positive output
representation by associative learning operating in the feedforward
connections. This should result in positive output neurons firing to
both positive (happy) and neutral faces and negative output neu-
rons firing to only negative (sad) faces.

Trace Learning

Other psychological studies have shown that sequential presen-
tation of the different views of an object, which produces temporal
continuity, can facilitate view-invariant object learning, where the
different views of an object occurring close together in time are
bound onto the same output representation (e.g., Perry, Rolls, &
Stringer, 2006). In contrast, systematically switching the identity
of a visual object during such sequential presentation impairs
position-invariant representations (Cox, Meier, Oertelt, & DiCarlo,
2005). Li and DiCarlo (2008) reported a neuronal evidence of
similar temporal association of visual objects that are presented
close together in time. In their study, monkeys were first trained to
track an object that had shifted around on a screen. In the exper-
imental condition, the target object was swapped to a different
object when the object was at a particular retinal location for the
monkeys. As a result, individual neurons in Inferotemporal (IT)
cortex that were originally selective to the target object started to
respond also to the different object at the specific retinal location.
These results show that the temporal statistics of object presenta-
tions should play a key role in the development of transform-
invariant object representations in the visual brain.
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Trace learning is a biologically plausible mechanism to achieve
such temporal association by incorporating a memory trace of recent
neuronal activity into the learning rule used to modify the feedforward
synaptic connections (Foldiak, 1991; Wallis & Rolls, 1997). This
encourages output neurons to learn to respond to input patterns that
occur close together in time. Stimuli that are experienced close to-
gether in time are likely to be strongly related; for instance, successive
stimuli could be different views of the same object. If a mechanism
exists to associate together stimuli that tend to occur close together in
time, then a network will learn that those stimuli form a single
percept. Trace learning provides one such mechanism by incorporat-
ing a temporal memory trace of postsynaptic cell activity 7; into a
standard Hebbian learning rule. In this article, the form of trace
learning rule implemented at each time step T is

T — 57—l
dwy; = krj 1] 3)

where 7] is the firing rate of presynaptic neuron j at time T, 7l is
the trace of postsynaptic neuron i at time T — 1, 3w} is the change
in the synaptic weight wj; from presynaptic neuron j to postsynaptic
neuron i at time T, and k is the learning rate. The trace term is
updated at each time step according to

=0 +qn ! 4

where 7 is a parameter anywhere in the interval [0, 1] that controls
the relative balance in the trace term 7, * of the current postsynaptic
cell firing rate, 7, and the previous trace of postsynaptic cell firing,
77~ 1. For the simulations described in the next section, 1 was set to
.8. The synaptic weight vector of each output neuron i is renor-
malized to unit length according to Equation 2 after each learning
update for each training pattern.

We propose that such innate trace learning mechanisms may
also be exploited to eliminate negative biases in the interpretation
of facial expression when combined with carefully designed se-
quences of transforming face images presented to the model. In
particular, if, during training with a trace learning rule, a neutral
face is presented in temporal proximity with many other very
happy faces that are associated with a positive output representa-
tion, then this should encourage these positive output neurons to
learn to respond to the neutral face as well. When the neutral face
is subsequently presented, the positive output representation
should suppress the negative output representation by competition
mediated by inhibitory interneurons. By implementing a trace-
learning rule and presenting the network with occasional neutral
faces among many happy faces, we expected to see positive output
neurons learning to respond to both positive and neutral faces.

Overview of Simulation Studies Carried Out
in This Article

We first describe simulations with a simplified one-layer neural
network architecture to test the two hypothesized CBM learning
mechanisms in a highly controlled manner in the section describing
Experiment 1. This is an important step to take to clearly illustrate the
exact underlying mechanisms of CBM in as simple a model as
possible. Then, we present simulation results in which realistic face
stimuli are used to train a more biologically detailed multilayer neural
network computer model, VisNet, of the ventral visual pathway in the
primate brain (Wallis & Rolls, 1997), which has recently been used to

show how the visual system may learn to represent facial expressions
(Eguchi, Humphreys, & Stringer, 2016; Tromans, Harris, & Stringer,
2011), in the section describing Experiment 2.

In both sections, we extend these previous modeling studies
involving synaptic plasticity and learning to the problem of un-
derstanding the neurobiological basis of CBM training by both CT
learning (Experiments la and 2a) and trace learning (Experiments
1b and 2b). Specifically, we show that both of these learning
mechanisms can be used to eliminate negative biases in the inter-
pretation of facial expression. That is, a subpopulation of sad
output neurons that initially responds to both sad and neutral faces
before learning will respond to the sad faces only after CBM
training. On the other hand, a subpopulation of happy output
neurons that initially responds to just happy faces before learning
will respond to both happy and neutral faces after training.

Experiment 1: One-Layer Network

In this section, we aim to demonstrate how CT learning and trace
learning may each be used to carry out CBM within a one-layer
competitive neural network. These simulations used a highly idealized
network architecture and input stimulus representations to provide a
controlled way of investigating and testing the underlying computa-
tional hypotheses described in the sections in the introduction.

In particular, we show how the responses of a one-layer competi-
tive neural network may be remapped, through CBM training, from a
negatively biased state to an unbiased state. We first demonstrate the
remapping using CT learning in Experiment 1a; then we demonstrate
the remapping using trace learning in Experiment 1b.

One-Layer Model Description

The network architecture and activation equations are common to
the models described in the sections about Experiments la and 1b.
The network, depicted in Figure 1a, comprises a single layer of input
cells that drive activity in a layer of two output cells through feed-
forward synapses. The output neurons compete with each other so that
only one such neuron can remain active at a time when an input
pattern is presented to the network. In the brain, such competition
between neurons within a layer is implemented by inhibitory interneu-
rons.

We describe this architecture as a one-layer network because
there is only a single layer of synapses in the model. The one-
dimensional layer of input cells provides a highly idealized repre-
sentation of facial expressions ranging continuously from happy to
sad. In the simulations, the input neurons have binarized (0/1)
firing rates. Each input neuron responds selectively to a small
localized region of the unidimensional space of facial expressions,
with the entire space of expressions from happy to sad covered by
the input layer. Consequently, the input layer represents each facial
expression of a particular emotional valence by the coactivation of
a localized cluster of input neurons at the corresponding position
within the layer.

At the beginning of the simulation, the feedforward synaptic con-
nection weights are initialized such that the left output cell (happy
output cell) responds to happy stimuli and the right output cell (sad
output cell) responds to sad stimuli. A negative cognitive bias can be
introduced in the network by initializing the synaptic connections
such that the more neutral input stimuli are initially responded to by
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(a) One-layer neural Network
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(b) CBM by CT Learning (c) CBM by Trace Learning
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Figure 1. Panel a: The one-layer neural network architecture used in the models described in the sections about
Experiment 1. A single layer of N input cells drove activity in the two output cells through the feedforward
synapses (black arrows). The input layer cells responded to stimuli that ranged from happy to sad, with different
simulations requiring different numbers of input cells, as detailed in the sections about Experiments la and 1b.
There were always two output cells in the network, with the left output cell responding to happy stimuli and the
right output cell responding to sad stimuli. Panel b: The training protocol for the one-layer network trained by
CT learning. The input layer contains a total of N = 600 neurons. During each training step, the current input
stimulus was represented by the firing rates of a contiguous subblock of input cells being set to 1 as illustrated
by the horizontal gray lines. We refer to the length of the stimulus as its stride, which was set to be 100 input
neurons. The firing rates of all other input cells were set to 0. At each successive training step, the input stimulus
was advanced by one input cell to ensure that successive stimuli were varied in a continuous manner, that is,
successive stimuli overlapped with each other, which is a requirement of CT learning. During each training
epoch, the input stimuli were shifted once through the whole continuum from happy to sad. Panel c: The training
protocol for the one-layer network trained by trace learning. The input layer contained a total of N = 900
neurons. During each training step, the current input stimulus was represented by the firing rates of a contiguous
subblock of input cells being set to 1 as illustrated by the horizontal gray lines. The length of each stimulus, its
stride, was set to be 100 input neurons. The firing rates of all other input cells were set to 0. To prevent CT-like
learning effects from occurring, the input stimuli did not overlap with each other. During training, the most happy
input stimuli were closely interleaved with more neutral input stimuli from the middle of the stimulus range,
whereas the most sad stimuli are shown without temporal interleaving with the neutral stimuli. This stimulus
presentation order enabled trace learning to associate together the happy and neutral stimuli onto the same happy

output cell. CBM = cognitive bias modification; CT = continuous transformation.

the sad output neuron rather than the happy output neuron. Then, by
modifying the strengths of the feedforward synaptic weights from the
input cells to the output cells through CBM training, it is possible to
alter the response characteristics of the output neurons in the network.
In particular, we show that CBM training by either CT learning or
trace learning can shift the network away from a negative bias to a
situation in which the happy output cell responds to the majority of the
input stimuli including both happy and more neutral stimuli.

At each time step during simulation of the network, an input
stimulus of a particular emotional valence was selected to be
presented to the network. During CBM training, the input stimuli
were presented in accordance with the spatiotemporal statistics
required by either CT learning or trace learning, as described in the
sections about Experiments 1a and 1b, respectively. Then the input
cell firing rates, r;, Were set to be either O or 1 according to the
training and testing protocols described in the Method sections for
Experiments la and 1b. The output cell firing rates, r; were
calculated by setting the activation level, 4;, of each output cell i to

h; = 2 Wiil'js ®)

J

where w; is the synapse from presynaptic input cell j to postsyn-
aptic output cell i, and the sum is taken over all presynaptic input
cells j. The output cell firing rates were then set by applying
winner-take-all inhibition so that the output cell with the highest
activation level was given a firing rate of 1 and the other output
cell was given a firing rate of 0.

During CBM training, after the firing rates of the output cells
were computed, the synaptic weights were then updated by either
the Hebbian learning rule (see Equation 1) in Experiment 1a or the
trace learning rule (see Equation 3) in Experiment 1b.

Initial Setup of the Network

Before the network underwent CBM training, the feedforward
synaptic weights to the sad and happy output cells were set
manually to control whether there was a preexisting cognitive bias.
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To establish the synaptic connectivity without an initial bias, the
synaptic weights to the sad output cell, wg,p,;, Were set so that

_ I
WsAD) = T ¥ exp[ —2B(e, — )] ©

The parameter ;€[ — 3, + 3]represents the preferred stimulus
location of input cell j within the sad to happy continuum, with
most sad = —3 and most happy = +3. The input neurons were
distributed evenly throughout the sad to happy stimulus con-
tinuum. The slope 3 was set to an appropriate value (described
in the top section of Table 1), and the threshold a was set to 0.
The synaptic weights to the happy output cell, wiyppy;, Were
set to be

WhAPPY; = 1 — WsaDj- @)

The effect of setting the weights in this manner is that all input cells
send feedforward synaptic weights to both of the output cells, but the
sad output cell receives stronger synaptic weights from the input cells
representing the sad end of the input continuum and the happy output
cell receives stronger synaptic weights from the input cells represent-
ing the happy end of the input continuum. In particular, with o = 0,
the feedforward synaptic connections were unbiased in that the happy
output cell and sad output cell received mirror-symmetric distribu-
tions of afferent synaptic connections covering the entire stimulus
space. This can be seen in the left plot of Figure 2a for the first

Table 1

simulation with CT learning (Experiment 1a) and Figure 2d for the
second simulation with trace learning (Experiment 1b).

To introduce a negative bias in the synaptic weights such that the
sad output cell would also respond to most of the middle, more
neutral, portion of the input continuum, the synaptic weights from the
input cells to the sad output cell were set according to Equation 6,
with the threshold « set to a negative value (described in the top
section of Table 1 for Experiment 1a and middle section of Table 1 for
Experiment 1b). The synaptic weights from the input cells to the
happy output cell were then set according to Equation 7. As can be
seen in the left plot of Figure 2b for the first simulation (Experiment
la) and Figure 2e for the second simulation (Experiment 1b), this
resulted in the sad output cell’s receiving stronger synaptic weights
from a greater proportion of the input cells than the happy output cell
did.

Experiment 1a: CBM by CT Learning

In this section, we simulate CBM in the one-layer network by the
continuous transformation (CT) learning mechanism described in the
introduction. It associatively remaps the feedforward connections
between successive neural layers while keeping the same initial set of
output neurons activated as the input patterns are gradually changed.
We exploited this mechanism by morphing happy input stimuli,
which are strongly associated with the positive output representation,

Parameters of the Three Different Simulation Studies (Two One-layer network studies and one

VisNet Study)

Parameter Value

Ist layer 2nd layer 3rd layer 4th layer

One-layer network (CT)
No. of input cells 600
Stride 100
Sigmoid slope () .
Biased sigmoid threshold (o) -1
Learning rate (k) 001
Training epochs 100

One-layer network (trace learning)
No. of input cells 9
Stride 100
Sigmoid slope () .
Biased sigmoid threshold («) -1
Learning rate (k) .01
Eta (n) 8
Training epochs 100

VisNet

Gabor
Gabor
Gabor
Gabor
Gabor

: Phase shift (V)

: Wavelength (\)

. Orientation ()

: Spatial bandwidth (b)
: Aspect ratio (y)

0, m
2
0, w/4, w/2, 3m/4
1.5 octaves
5

No. of layers

Retina

Dimension

No. of fan-in connections
Fan-in radius

Sparseness of activations
Sigmoid slope (3)
Learning rate (k)
Training epochs
Excitatory radius (o)
Excitatory contrast (3)
Inhibitory radius (o)
Inhibitory contrast (3,)

4
256 X 256 X 16
128 X 128
201
24

128 X 128
100

24
44%
99
1.0
20
1.1
33.15
13.88
1.5

128 X 128
100
36
32%
146

128 X 128
100
48
25%
207
1.0
20
1.2
120.12
14.80
1.4

Note. CT = continuous transformation.
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CBM by CT Learning

(a) Hardwired network without bias
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CBM by Trace Learning

(d) Hardwired network without bias
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(e) Hardwired network with negative bias
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(f) Network after CBM retraining
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Figure 2. Demonstration of CBM in a one-layer network using CT learning (Panels a—c) and trace learning
(Panels d—f) to remap the synaptic weights. The figure shows the feedforward synaptic weights (left column) and
firing rates of the output cells (right column) at various stages of the simulation. Panels a and d: Results of testing
the initial, unbiased hardwired network. The lack of bias in the synaptic weights resulted in the happy and sad
output cells’ responding to equal numbers of the input patterns. Panels b and e: Results of testing the biased
hardwired network. After the negative bias was introduced to the synaptic weights, the sad output cell now
responded to the majority of the input patterns. Panels c¢ and f: Results of testing the network after remapping
the synaptic weights through CBM training with CT learning (Panel ¢) and with trace learning (Panel f). The
learning effected a remap in the synaptic weights such that the happy output cell now had stronger synaptic
weights from the majority of the input cells. The effect of this remapping was that the happy output cell now
responded not only to the most happy stimuli but also to the majority of the more neutral input patterns. CBM =
cognitive bias modification; CT = continuous transformation.

that is, the happy output neuron, into more neutral stimuli during
training. This causes the efferent connections from the neutral stimuli
to be remapped to the positive output representation by associative
learning operating in the feedforward connections. When the neutral
stimuli are presented again after training, the positive output repre-
sentation should respond and also suppress the negative output rep-
resentation by competition mediated by inhibitory interneurons.
Method. Figure 1b shows the setup for training the one-layer
network with CT learning. The input layer contains a total of N =

600 neurons. The layer of input cells represents a continuum of
facial expressions from happy (left) to sad (right). The input
stimulus presented to the network at any given training step is
represented by the firing rates of a contiguous subblock of input
cells’ being set to 1, as illustrated by the horizontal gray lines in
Figure 1b. We refer to the length of the stimulus as its stride,
which was set to be 100 input neurons. The firing rates of all other
input cells are set to 0. In this simulation with CT learning, the
Hebb learning rule (see Equation 1) is used. Because the Hebb
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learning rule does not contain a memory trace of previous neuronal
activity, this ensures that any observed bias modification is the
result of CT learning and not the result of trace learning.

During training of the network, illustrated in Figure 1b, the input
stimulus was moved continuously through the layer of input cells,
advancing one input cell per learning update of the network. At
each stimulus presentation, the activations of the output neurons
were first updated according to Equation 5, the firing rates of the
output neurons were then computed using winner-take-all compe-
tition, and then the feedforward synaptic weights were modified
according to Equations 1 and 2. One epoch of training was com-
pleted after the input stimulus had been shifted through the whole
continuum from happy to sad. Upon reaching the specified number
of training epochs, the training phase was finished and the testing
phase began, which followed the same protocol as the training
phase with the exception that the weight update and normalization
equations, Equations 1 and 2, were not simulated. The simulation
was then complete. A one-layer neural network model was simu-
lated with the parameters given in the top section of Table 1.

Results. First, the network was simulated with the synaptic
weights initially hardwired to unbiased values according to Equa-
tions 6 and 7 with the threshold « set to 0. Next, the network was
simulated with a negative cognitive bias introduced by hardwiring
the synaptic weights according to Equations 6 and 7 with the
threshold o set to —1. This ensured that the sad output cell
responded not only to very sad stimuli but also to the majority of
the more neutral stimuli. In the final simulation, the negative bias
in the previous biased network was eliminated by CBM training
using CT learning. This had the effect of remapping the feedfor-
ward synaptic weights so that the happy output cell took over
responding to the majority of the neutral stimuli.

Untrained network performance (before and after biases were
added). The network was simulated with the synaptic weights
initially hardwired to unbiased values. The left plot of Figure 2a
shows the unbiased weights from the input cells to the output cells.
The sad output cell received the strongest synaptic weights from
the input cells representing the sad end of the stimulus continuum,
and the happy output cell received the strongest synaptic weights
from the input cells representing the happy end of the stimulus
continuum. The two output cells received equal, albeit mirror-
symmetric, distributions of synaptic weights from the input cells
representing the middle, more neutral, portion of the stimulus
continuum. The right plot of Figure 2a shows the firing rates of the
two output cells in response to presentation of the input stimuli.
The happy output cell responded strongly to very happy input
stimuli, the sad output cell responded strongly to very sad input
stimuli, and most important, both output cells responded to equal-
sized regions of the more neutral intermediate input stimuli. These
responses are to be expected, given the unbiased feedforward
synaptic weight profiles between the input cells and the output
cells.

The network was simulated with a negative cognitive bias
introduced by hardwiring the synaptic weights. The left plot of
Figure 2b shows the synaptic weights after a bias was applied. The
sad output cell received stronger synaptic weights from the sad
end of the input range and most of the more neutral input cells, and
the happy output cell now received stronger synaptic weights from
only the input cells representing the happy end of the input
continuum. The effect of this bias is that the sad output cell now

responded not only to very sad stimuli but also to the majority of
the more neutral stimuli, whereas the happy output cell did not.
This can be seen in the right plot of Figure 2b.

Learned (remapped) network performance. The negative
bias in the previous biased network was eliminated by CBM
training using CT learning. After CT learning, the synaptic weights
should have remapped such that the happy output cell now re-
ceived stronger synaptic weights from the input cells representing
a larger portion of the intermediate, more neutral, stimuli than did
the sad output cell. The effect of this learned remapping is that the
happy output cell responded to a greater proportion of the input
stimulus space than the sad output cell did. That is, the happy
output cell now responded to the majority of the intermediate
neutral stimuli. This can be seen in the right plot of Figure 2¢ (cf.
the right plot of Figure 2b). This represents CBM, where the bias
in the network has been shifted from negative to positive by CT
learning.

Experiment 1b: CBM by Trace Learning

Having shown how CBM may be accomplished through CT
learning, we now show how it may also be accomplished using a
different learning paradigm: trace learning. In this section, we
simulate CBM in the one-layer network by the trace learning
mechanism described in the introduction. Trace learning is an
invariance learning mechanism that utilizes a trace learning rule,
Equation 3 with weight vector normalization Equation 2 to modify
the feedforward synaptic connections. Trace learning incorporates
a memory trace 77 | of recent neuronal activity into the learning
rule used to modify the feedforward synaptic connections. This
encourages output neurons to learn to respond to input patterns that
occur close together in time. If, during training, a neutral stimulus
is presented in temporal proximity with many other very happy
stimuli that are associated with the positive output representation,
that is, the happy output neuron, then this should encourage the
positive output representation to respond to the neutral stimulus as
well. When the neutral stimulus is subsequently presented, the
positive output representation should suppress the negative output
representation by competition, which in the brain is mediated by
inhibitory interneurons.

Method. The setup for training the one-layer network with
trace learning is shown in Figure 1c. The input layer contains N =
900 neurons. The input layer represents a range of facial expres-
sions from happy (left) to sad (right). Each input stimulus shown
to the network is represented by the firing rates of a contiguous
subblock of input cells being set to 1, as illustrated by the hori-
zontal gray lines in Figure lc. The length of each stimulus pre-
sented to the network was set to be 100 input neurons, whereas the
firing rates of all other input cells were set to 0.

In contrast to the training protocol used for the previous simu-
lations with CT learning described in the Method section for
Experiment 1la, the input stimuli used for trace learning in this
section do not overlap as they advance through the input space.
This prevents any CT-like learning effects from occurring and so
ensures that any bias modification that occurs is the result of trace
learning and not the result of CT learning. The training protocol
with trace learning is shown in Figure lc.

During training of the network, illustrated in Figure 1c, the input
stimuli were divided into two separate groups: one group contain-
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ing stimuli from the most happy and more neutral (middle) parts of
the input stimulus range and one group containing stimuli from
only the sad end of the input stimulus range. During an epoch of
training, one of the two stimulus groups was selected at random. If
the stimulus group contained only the sad stimuli, these stimuli
were shown to the network in a random order. If the stimulus
group contained both the happy and more neutral stimuli, then the
happy stimuli were interleaved with the neutral stimuli such that a
happy stimulus was shown followed by a neutral stimulus but with
these stimuli paired in a random order. After presentation of the
first group of stimuli (happy/neutral, or sad), the second group of
stimuli was shown to the network. During the presentation of each
stimulus, the activations of the output neurons were updated by
Equation 5, the firing rates of the output neurons were then
computed according to winner-take-all competition, and the syn-
aptic weights were then updated according to the trace learning
rule Equation 3 with weight vector normalization Equation 2. After
all stimuli had been presented, an epoch of training was complete
and the next epoch of training began. The order of the stimulus
groups and the order of stimulus presentation within the group
were randomly selected for each training epoch. Upon reaching the
specified number of epochs, the training phase was finished and
the testing phase began, during which the input stimuli were
presented one at a time to the network, ranging from happy to sad.
The weight update and normalization equations, Equations 3 and
2, were not simulated during the testing phase. After the testing
phase, the simulation was complete. A one-layer neural network
model was simulated with the parameters given in Table 1b.

Results. The network was first simulated with the synaptic
weights manually set to unbiased values according to Equations 6
and 7 with a = 0. Next, the network was simulated with a negative
bias introduced by hardwiring the synaptic weights according to
Equations 6 and 7 with « = —1. This caused the sad output neuron
to respond to most of the more neutral stimuli in addition to the sad
stimuli. Last, the negative bias in the previous network was elim-
inated by CBM training using trace learning. This resulted in the
happy output neuron’s now responding to most of the neutral
stimuli as well as the happy stimuli.

Untrained network performance (before and after biases were
added). The network was simulated with unbiased hardwired
synaptic weights. Figure 2d (left side) shows the unbiased synaptic
weights. The sad output cell received the strongest synaptic
weights from the sad end of the stimulus range, whereas the happy
output cell received the strongest synaptic weights from the happy
end of the stimulus range. The two output cells received equal,
albeit mirror-symmetric, distributions of synaptic weights from the
intermediate neutral portion of the stimulus continuum. Figure 2d
(right side) shows the firing rate responses of the two output cells
to the full range of input stimuli. The happy output cell responded
to happy stimuli and the sad output cell responded to sad stimuli,
whereas both output cells responded to equal numbers of the more
neutral intermediate stimuli.

The network was then simulated with a negative cognitive bias
introduced by hardwiring the synaptic weights. Figure 2e (left
side) shows the synaptic weights. The sad output cell received
stronger synaptic weights from the sad end of the input range and
most of the more neutral input cells, whereas the happy output cell
received stronger synaptic weights from only the happy end of the
input range. Figure 2e (right side) shows the firing rate responses

of the two output neurons to the full range of input stimuli. Due to
the biased synaptic weights, the sad output cell responded to the
majority of the more neutral stimuli in addition to the sad stimuli,
whereas the happy output cell responded to only the more happy
stimuli.

Learned (remapped) network performance. The negative
bias in the previous biased network was eliminated by CBM
training using trace learning. After trace learning, the feedforward
synaptic weights remapped so that the happy output neuron re-
ceived stronger synaptic weights from input neurons representing
the happy stimuli and the majority of the more neutral stimuli,
whereas the sad output cell received strong synaptic weights from
only the sad end of the input stimulus range. This can be seen in
the left plot of Figure 2f. The effect of this remapping is that the
happy output cell now responded to stimuli from the happy to
middle neutral region of the input stimulus range, whereas the sad
output cell responded to stimuli from only the sad end of the input
stimulus range, which can be seen in the right plot of Figure 2f.
Thus, trace learning produced CBM, where the bias in the network
was shifted from negative to positive.

Experiment 2: VisNet Simulation

In this section, we test computational hypotheses described in
the introduction using realistic face stimuli presented to an estab-
lished, biologically detailed, hierarchical neural network model,
VisNet, of the primate ventral visual pathway (Stringer et al.,
2006; Wallis & Rolls, 1997). The simulations with VisNet were
carried out in two stages of training as explained in the following
paragraphs.

In the first training stage, VisNet was trained on a set of
randomized computer-generated face images where the identity
and expression of each face was chosen randomly. Eguchi et al.
(2016) reported that this led to the development of separate sub-
populations of output neurons that responded selectively to either
facial identity or expression. Such neurons have been experimen-
tally observed in single-unit recording neurophysiology studies on
the primate brain (Hasselmo, Rolls, & Baylis, 1989).

The second stage of training involved CBM by either CT
learning or trace learning, similar to that described previously for
the one-layer network. Specifically, we tested whether the initial
negative bias in the synaptic connectivity developed in the pre-
training could be shifted from sad to happy after CBM retraining
on new, specially designed sequences of face images. In these
second-stage simulations, the sequences of face images used for
CBM retraining were constructed in accordance with the spatio-
temporal stimulus statistics required by either the CT learning
(Experiment 2a) or trace learning (Experiment 2b) hypotheses.

VisNet Model Description

The simulation studies presented next were conducted with a hier-
archical neural network model of the primate ventral visual pathway,
VisNet, which was originally developed by Wallis and Rolls (1997).
The standard network architecture (shown in Figure 3a) is based on
the following: (a) a series of hierarchical competitive networks with
local graded lateral inhibition; (b) convergent connections to each
neuron from a topologically corresponding region of the preceding
layer, leading to an increase in the receptive field size of neurons
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(a) VisNet Architecture
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Figure 3. Panel a (left side): Stylized image of the four-layer VisNet architecture. Convergence through
the network was designed to provide fourth-layer neurons with information from across the entire input
retina. Panel a (right side): Convergence in the visual system V1: visual cortex area V1; TEO posterior
inferior temporal cortex; and TE inferior temporal cortex. Panel b: Examples of the face stimuli used to
pretrain VisNet. Here 100 realistic human faces were randomly generated with different identities, and the
expressions of individual faces were also randomly set along a continuous dimension between happy and
sad. Panel c: Examples of the face stimuli used to perform CBM retraining on VisNet through CT learning.
The image set was constructed from five different facial identities. For each of these facial identities, 10
face images were constructed by sampling 10 evenly spaced expressions between happy and neutral. Panel
d: Examples of the face stimuli used to perform CBM retraining on VisNet through trace learning. The
image set consisted of 25 faces with a happy expression and 25 faces with a neutral expression. Each of
these 50 faces had a different randomly generated identity. The figure presents some examples of these
images. CBM = cognitive bias modification; CT = continuous transformation; LGN = lateral geniculate
nucleus; deg = degree.

through the visual processing areas; and (c) synaptic plasticity based
on a local associative learning rule such as the Hebb rule or trace rule.

In past work, the hierarchical series of four neuronal layers of
VisNet have been related to the following successive stages of
processing in the ventral visual pathway: V2, V4, the posterior
inferior temporal cortex, and the anterior inferior temporal
cortex (Wallis and Rolls, 1997). However, this correspondence
has always been quite loose because the ventral pathway may be

further subdivided into a finer grained network of distinct
subregions.

Each layer consists of 128 X 128 cells, and the forward con-
nections to individual cells are derived from a topologically cor-
responding region of the preceding layer, using a Gaussian distri-
bution of connection probabilities. These distributions are defined
by a radius that contains approximately 67% of the connections
from the preceding layer. The values used in the current studies are
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given in the bottom section of Table 1. The gradual increase in the
receptive field of cells in successive layers reflects the known
physiology of the primate ventral visual pathway (Freeman &
Simoncelli, 2011; Pasupathy, 2006; Pettet & Gilbert, 1992).

During training with visual objects, the strengths of the feed-
forward synaptic connections between successive neuronal layers
are modified by biologically plausible local learning rules, where
the change in the strength of a synapse depends on the current or
recent activities of the pre- and postsynaptic neurons. A variety of
such learning rules, in this case both Hebbian learning (see Equa-
tion 1) and trace learning (see Equation 3), may be implemented
with different learning properties.

Preprocessing of the visual input by Gabor filters. Before
the visual images are presented to VisNet’s Input Layer 1, they are
preprocessed by a set of input filters that accord with the general
tuning profiles of simple cells in V1. The filters provide a unique
pattern of filter outputs for each image, which is passed through to
the first layer of VisNet. In this article, the input filters used were
Gabor filters. These filters are known to provide a good fit to the
firing properties of V1 simple cells, which respond to local ori-
ented bars and edges within the visual field (Cumming & Parker,
1999; J. P. Jones & Palmer, 1987). The input filters used were
computed by the following equations:

r2+ 2,02

80670, 0,4 b, ) = expl =X Joos 2 + )
20 A

)
with the following definitions:
x" = xcosO + ysin6
y' = —xsinb + ycos6, )
o= M2+ 1)\/@
72" - 1) 2

where x and y specify the position of a light impulse in the visual
field (Petkov & Kruizinga, 1997). The parameter A is the wave-
length (1/\ is the spatial frequency), o controls number of such
periods inside the Gaussian window based on A and spatial band-
width b, 0 defines the orientation of the feature, s defines the
phase, and vy sets the aspect ratio that determines the shape of the
receptive field. In the experiments in this article, an array of Gabor
filters was generated at each of 256 X 256 retinal locations with
the parameters given in the bottom section of Table 1.

The outputs of the Gabor filters were passed to the neurons in
Layer 1 of VisNet according to the synaptic connectivity given in
the bottom section of Table 1. That is, each Layer 1 neuron
received connections from 201 randomly chosen Gabor filters
localized within a topologically corresponding region of the retina.

Calculation of cell activations within the network. Within
each of the Neural Layers 1 to 4 of the network, the activation A;
of each neuron i was set equal to a linear sum of the inputs r; from
afferent neurons j in the preceding layer weighted by the synaptic
weights w;; according to Equation 5.

Self-organizing map. In this article, we ran simulations with
a self-organizing map (SOM; Kohonen, 1982; Von der Malsburg,
1973) implemented within each layer. In the SOM architecture,
short-range excitation and long-range inhibition were combined to
form a Mexican-hat spatial profile and were constructed as a
difference of two Gaussians as follows:

EGUCHI ET AL.
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Here, to implement the SOM, the activations h; of neurons
within a layer were convolved with a spatial filter, 7, where §,
controlled the inhibitory contrast and &, controlled the excit-
atory contrast. The width of the inhibitory radius was controlled
by o,, whereas the width of the excitatory radius was controlled
by 0. The parameters a and b index the distance away from the
center of the filter. The lateral inhibition and excitation param-
eters used in the SOM architecture are given in the bottom
section of Table 1.

Contrast enhancement of neuronal firing rates within each
layer. Next, the contrast between the activities of neurons with
each layer was enhanced by passing the activations of the neurons
through a sigmoid transfer function as follows:

1

1 +exp[—2B(h — )] an
where &’ is the activation after applying the SOM filter, r is the
firing rate after contrast enhancement, and o and 3 are the sigmoid
threshold and slope, respectively. The parameters o and 3 were
constant within each layer, although o was adjusted within each
layer of neurons to control the sparseness of the firing rates. For
example, to set the sparseness to 4%, the threshold was set to the
value of the 96th percentile point of the activations within the
layer. The parameters for the sigmoid activation function are
shown in the bottom section of Table 1. These are general robust
values found to operate well. They are similar to the standard
VisNet sigmoid parameter values that were previously optimized
to provide reliable performance (Stringer et al., 2006; Stringer &
Rolls, 2008; Stringer, Rolls, & Tromans, 2007).

Information analysis. A single-cell information measure was
applied to the trained network of Eguchi et al. (2016) to identify
the different subpopulations of output (fourth layer) neurons that
responded selectively to either happy faces or sad faces regardless
of facial identity. Full details on the application of this measure to
VisNet are given by Rolls and Milward (2000). In particular, the
magnitude of the information measure reflects the extent to which
a neuron responds selectively to a particular stimulus category,
such as a happy or sad expression, but also responds invariantly to
different examples from that category, such as different face iden-
tities.

The single-cell information measure was applied to individual
cells in Layer 4 and measured how much information was avail-
able from the response of a single cell about which stimulus
category, that is, a happy expression or a sad expression, was
shown. For each cell, the single-cell information measure used was
the maximum amount of information a cell conveyed about any
one stimulus category. This was computed using the following
formula, with details given by Rolls, Treves, Tovee, and Panzeri
(1997) and Rolls and Milward (2000). The stimulus-specific in-
formation I(s, R) is the amount of information the set of responses
R has about a specific stimulus category s and is given by

r :fsigmoid(hr) —

I(s.R) = % P(r|s)log2ﬂP%l. (12)

where r is an individual response from the set of responses R.
The maximum amount of information that can be attained was
log,(N) bits, where N is the number of stimulus categories. For the
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case of two stimulus categories, that is, happy and sad expressions,
the maximum amount of information is 1 bit.

Pretraining VisNet

In the first stage of the simulations, VisNet was pretrained on a
set of 100 randomized computer generated face images, which
were created using the software package FaceGen (2013). Face-
Gen allows for controlled production of realistic face stimuli,
developed from a series of photographs of real people. The faces
were randomly generated with different identities, and the expres-
sions of individual faces were also randomly set along a continu-
ous dimension between happy and sad. Examples of these face
images are shown in Figure 3b.

The pretraining stage was carried out using the Hebbian learning
rule (see Equation 1) with weight vector normalization (see Equa-
tion 2). The presentation of the 100 randomized faces constituted
one epoch of training, and the network was trained for a total of 20
training epochs during this stage.

The network was then tested by presenting 100 happy faces, all
with different facial identities, and then presenting 100 sad faces
with different facial identities. For each presentation of a face, the
firing rates of all of the output neurons were recorded. Information
analysis was then used to identify whether any output neurons
carried high levels of information about facial expression; that is,
whether these neurons had learned to respond to either happy
expressions regardless of identity or sad expressions regardless of
identity.

Figure 4b shows the single-cell information carried by all output
(fourth layer) neurons before and after pretraining on the random-
ized face images. The plot shows the information carried by the
fourth-layer neurons about either happy or sad expressions, where
the neurons are plotted in rank order along the abscissa. The
maximum amount of information possible for the simulation is
log,(N) bits, where N is the number of categories (happy or sad)
that are 1 bit. The dashed line represents the untrained network,
whereas the solid line represents the trained network. The result
shows that pretraining VisNet on many randomly generated faces
significantly increased the amount of single-cell information car-
ried by fourth-layer neurons about the facial expression as origi-
nally reported in Eguchi et al. (2016).

These computed information values enabled us to identify two
different subpopulations of output neurons that had learned to
respond to either happy or sad expressions regardless of facial
identity. Figure 4c shows the response profiles of five happy
output neurons and five sad output neurons recorded in response to
the matrix of test faces shown in Figure 4a directly after the initial
stage of pretraining (solid line). The plots show the average firing
rate of the cells in response to 20 different facial expressions
ranging from very happy (1) to very sad (20). For each facial
expression, the firing rates were averaged over the 20 different
facial identities. These neurons have approximately monotonic
response profiles, with happy neurons (top row) responding max-
imally to the most happy faces and sad neurons (bottom row)
responding maximally to sad faces, as previously reported in the
simulation study of Eguchi et al. (2016). It is interesting that these
authors showed that these neurons were actually encoding partic-
ular spatial relationships between the facial features that correlated
with facial expression. For a more detailed analysis of the neuronal

firing properties that developed during the pretraining stage, please
refer to this previous publication.

In the next sections, we show how to remap the feedforward
synaptic connections to these two subpopulations of output neu-
rons by either CT learning or trace learning to shift the cognitive
bias from negative to positive.

Experiment 2a: CBM by CT Learning

Method. In this section we describe how, after pretraining
VisNet on 100 randomized faces as described earlier, VisNet then
underwent a stage of CBM retraining by CT learning. During this,
the network was retrained on continuously transforming face im-
ages with the Hebbian learning rule (see Equation 1) with weight
vector renormalization (see Equation 2). Figure 3¢ shows exam-
ples of the face stimuli used to perform CBM retraining by CT
learning. The image set was constructed from five different facial
identities. For each of these facial identities, 10 face images were
constructed by sampling 10 evenly spaced expressions between
happy and neutral. Figure 3c shows a subset of these images
corresponding to one particular facial identity morphed through 10
equispaced expressions from happy (top left) to neutral (bottom
right). During CBM retraining, the first facial identity was pre-
sented and then transformed continuously through the 10 expres-
sions from happy to neutral. Then the second facial identity was
similarly presented, transforming continuously through the 10
expressions from happy to neutral. This was repeated for all five
facial identities in turn, which constituted one epoch of training.
The network underwent a total of 50 training epochs. In this
situation, CT learning (Stringer et al., 2006) began to remap the
feedforward synaptic connections through successive neuronal
layers within the network according to the computational hypoth-
esis described in the introduction. That is, when the happy face
was presented, it stimulated the happy output (fourth layer) neu-
rons to respond. Then, as the face gradually morphed from happy
to neutral, the happy output cells continued to respond due to the
CT learning mechanism, operating in the feedforward synaptic
connections between successive layers. At the same time, the later
more neutral faces were remapped onto the happy output neurons
through the Hebbian learning rule (see Equation 1) with weight
vector renormalization (see Equation 2). This retraining was car-
ried out for each of the five different facial identities over 100
training epochs. In this way, the low-level features representing
more neutral faces in the lower layers of the network became
remapped onto the more happy output representations. Thus, CBM
occurred.

We wanted to assess how well CBM retraining remapped the
more neutral faces away from the sad output neurons and onto
the happy output neurons. To do this, we began by reanalyzing the
amount of information that individual output neurons carried about
either happy or sad expressions directly before the CBM retraining
stage. Specifically, we identified the subset of 1,000 neurons that
carried the most information about the presence of a happy ex-
pression and another subset of 1,000 neurons that carried the most
information about the presence of a sad expression. In this way, we
identified two separate subsets of output neurons: that is, happy
versus sad subpopulations. The performance of the CBM retrain-
ing was assessed by recording and analyzing the firing rates of the
happy and sad subpopulations of output neurons in response to the
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set of test faces shown in Figure 4a directly before and after CBM
retraining. This is the same set of face images as used in the
simulation study conducted by Eguchi et al. (2016). In particular,
a one-dimensional space of 20 different facial identities, which
varied gradually from one identity, A, to another identity, B, was
constructed. Each of these facial identities was then varied over a
one-dimensional space of 20 different expressions that varied
gradually from sad to happy. This produced a matrix of 400 face
stimuli constructed from 20 identities X 20 expressions. By re-
cording the responses of the happy and sad subsets of output
neurons to these test faces directly before and after CBM retrain-
ing, we were able to assess how well the CBM retraining had
remapped the more neutral faces away from the sad neurons and
onto the happy neurons.

Results. After pretraining the network on the set of 100 ran-
domly generated faces (see Figure 3b), we identified the subset of
five output neurons that carried the most information about a
happy expression and another subset of five output neurons that
carried the most information about a sad expression. Figure 4c
shows the average firing rates of the five happy output neurons
(top row) and five sad output neurons (bottom row) recorded in
response to the matrix of test faces shown in Figure 4a directly
before and after CBM retraining. The plots show the average firing
rate of the cells after the initial pretraining (solid line), after the
remapping with CT learning (dashed line) in response to 20
different facial expressions ranging from very happy (1) to very
sad (20). For each facial expression, the firing rates were averaged
over the 20 different facial identities. It can be seen that the happy
output neurons responded with a greater average firing rate across
the space of expressions after CBM training by CT learning. In
particular, CBM retraining remapped the more neutral faces away
from the sad output neurons and onto the happy output neurons.

Furthermore, we identified the subset of 1,000 neurons that
carried the most information about a happy expression and another
subset of 1,000 neurons that carried the most information about a
sad expression. The firing rates of the subpopulation of happy
output neurons and subpopulation of sad output neurons were then
recorded in response to the matrix of test faces shown in Figure 4a
directly before and after CBM retraining. Figure 4d shows the
average firing rate of all the happy output cells (dashed line) and
all the sad output cells (solid line) in response to 20 different facial
expressions ranging from very happy (1) to very sad (20). The left
plot shows the output of the network directly before CBM retraining,
and the right plot shows the output of the network after CBM

retraining with CT learning. It can be seen that directly before CBM
retraining, the subpopulation of sad output neurons responded more
strongly on average than did the happy output neurons to all facial
expressions greater than 4 on the happiness scale (1-20) represented
along the abscissa. However, after CBM retraining, the sad output
neurons responded more strongly than did the happy output neurons
to only facial expressions greater than 16 on the happiness scale.
Thus, CBM retraining remapped the more neutral faces away from
the sad output neurons and onto the happy output neurons. In partic-
ular, CBM retraining was able to shift the bias in the network from
negative to positive using a biologically plausible Hebbian learning
rule (see Equation 1) with weight vector renormalization (see Equa-
tion 2) when the faces were presented, transforming continuously
from happy to sad as shown in Figure 3c.

Experiment 2b: CBM by Trace Learning

Method. In this section, VisNet underwent a stage of CBM
retraining by trace learning after the initial stage of pretraining
VisNet on 100 randomized faces as described earlier. During this,
the network was retrained on faces with either happy or neutral
expressions, with the synapses modified using the trace learning
rule (see Equation 3) with weight vector renormalization (see
Equation 2). Figure 3d shows examples of the face stimuli used to
perform CBM retraining by trace learning. The image set consisted
of 25 faces with a happy expression and 25 faces with a neutral
expression. Each of these 50 faces had a different randomly
generated identity. Figure 3d shows some examples of these im-
ages. The top row shows a selection of five happy faces, whereas
the bottom row shows five neutral faces. During CBM retraining,
faces with happy or neutral expressions were shown alternately in
an interleaved fashion; that is, the presentation order was Happy
Face 1, Neutral Face 1, Happy Face 2, Neutral Face 2, and so on
until eventually reaching Happy Face 25 and Neutral Face 25. The
ordered presentation of all 50 faces constituted one epoch of
training. The network underwent a total of 50 training epochs. In
this situation, trace learning (Foldiak, 1991; Wallis & Rolls, 1997)
encourages the happy output neurons to learn to respond to both
the happy faces and more neutral faces that are presented in
temporal proximity; that is, the neurons that are originally selective
to only happy faces may start to respond also to the more neutral
faces based on temporal associations. In this way, the low-level
features representing more neutral faces in the lower layers of the

Figure 4 (opposite).

Panel a: The face stimuli used to test VisNet. A one-dimensional space of 20 different facial identities, which varied gradually from

Identity A to Identity B, were constructed. Then each of these identities was varied over a one-dimensional space of 20 different expressions that varied
gradually from sad to happy. Panel b: The amount of information carried by output (fourth layer) neurons after pretraining VisNet. The plot shows the
information carried by all of the fourth-layer neurons about either happy or sad expressions, where the neurons are plotted in rank order along the abscissa.
Panel c: Demonstration of CBM by CT learning (cl row) and trace learning (c2 row) in VisNet. The firing rates of five happy output neurons and five sad
output neurons were recorded in response to the matrix of test faces shown in Panel a directly before and after CBM retraining. The plots show the average
firing rate of the cells in response to 20 different facial expressions ranging from very happy (1) to very sad (20). For each facial expression, the firing rates
were averaged over the 20 different facial identities. Panel d: The plots show the average firing rate of all the happy output cells (dashed line) and all the
sad output cells (solid line) in response to 20 different facial expressions ranging from very happy (1) to very sad (20). For each facial expression, the firing
rates were averaged over the 20 different facial identities. The subplot (d1) shows the output of the network directly before CBM retraining, and the subplots
d2 and d3 show the output of the network after CBM retraining with CT learning and with trace learning, respectively. CBM = cognitive bias modification;

CT = continuous transformation.



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

214 EGUCHI ET AL.

network become remapped onto the more happy output represen-
tations. Hence, CBM takes place.

Results. The network performance was assessed in a manner
similar to that described earlier for CT learning in Experiment 2a.
After pretraining the network on the set of 100 randomly generated
faces (see Figure 3b), we identified the subset of five neurons that
carried the most information about a happy expression and another
subset of five neurons that carried the most information about a sad
expression. Figure 4c shows the average firing rates of the five
happy output neurons (top row) and five sad output neurons
(bottom row) recorded in response to the matrix of test faces
shown in Figure 4a directly before and after CBM retraining. The
plots show the average firing rates of the cells after the initial
training (solid line) and after the remapping with trace learning
(dash—dot line) in response to 20 different facial expressions
ranging from very happy (1) to very sad (20). For each facial
expression, the firing rates were averaged over the 20 different
facial identities. It can be seen that the happy output neurons
responded with a greater average firing rate across the space of
expressions after CBM training by trace learning. In particular,
CBM retraining remapped the more neutral faces away from the
sad output neurons and onto the happy output neurons.

Also, we identified the subset of 1,000 neurons that carried the
most information about a happy expression and another subset of
1,000 neurons that carried the most information about a sad ex-
pression. These were exactly the same subsets of happy and sad
output cells that were identified for the CT learning simulation
described in the section describing Experiment 2a. The firing rates
of the subpopulation of happy output neurons and subpopulation of
sad output neurons were then recorded in response to the matrix of
test faces shown in Figure 4a directly before and after CBM
retraining. Figure 4 shows the average firing rate of all the happy
output cells (dashed line) and all the sad output cells (solid line) in
response to 20 different facial expressions ranging from very
happy (1) to very sad (20). The subplot (see Figure 4d1) shows the
output of the network directly before CBM retraining, and the
subplot (see Figure 4d3) shows the output of the network after
CBM retraining with trace learning. It can be seen that directly
before CBM retraining, the subpopulation of sad output neurons
responded more strongly on average than did the happy output
neurons to all facial expressions greater than 3 on the happiness
scale (1-20) represented along the abscissa. However, after CBM
retraining, the sad output neurons responded more strongly than
did the happy output neurons to only facial expressions greater
than 18 on the happiness scale. Hence, the more neutral faces had
been remapped away from the sad output neurons and onto the
happy output neurons by the CBM retraining. In particular, CBM
retraining had shifted the bias in the network from negative to
positive using a biologically plausible trace learning rule (see
Equation 3) with weight vector renormalization (see Equation 2)
when the faces were presented with the happy and neutral expres-
sions shown in Figure 3d interleaved.

Discussion

In this article we described and modeled two alternative CBM
training mechanisms: continuous transformation (CT) learning
(Stringer et al., 2006) and trace learning (Foldiak, 1991; Wallis &
Rolls, 1997). These learning mechanisms were previously used to

model how the primate ventral visual pathway learns to perform
transform invariant visual object recognition. CT learning binds
together input stimuli onto the same categorical output represen-
tation using spatial continuity, whereas trace learning binds to-
gether stimuli using temporal continuity. Experimental support for
these two learning mechanisms has been provided by previous
psychophysical studies, which have confirmed that human subjects
bind together different images onto a single categorical represen-
tation using a mixture of both spatial continuity (CT learning) and
temporal continuity (trace learning; Perry et al., 2006). Our current
simulations have shown that these same learning mechanisms may
be implemented in neural network computer models to rewire the
synaptic connectivity to eliminate the kind of negative cognitive
biases associated with clinical depression.

To our knowledge, this is the first study to model the application
of the CT learning and trace learning mechanisms to CBM-
Interpretation. Previous experimental studies have found that
CBM-Interpretation can reduce negative cognitive biases in human
participants (Grey & Mathews, 2000; Mathews & Mackintosh,
2000), which in turn can reduce the risk for depression recurrence
(Holmes, Lang, & Sham, 2009). This article provides potential
explanations at the neuronal and synaptic level for how such a shift
in interpretational bias might occur through CBM training. Under-
standing the way in which biases can be shifted is crucial at
present, given the mixed results seen in CBM research so far (Fox
et al.,, 2014). In this article, we successfully demonstrated how
computational models can be used to explore and exploit existing
psychological phenomena to optimize a CBM procedure.

Implications and Future Work

The results of these simulations are highly informative for the
development of experimental protocols to develop optimal CBM
training methodologies with human participants. We aim to de-
velop two separate experiments using the stimuli from these sim-
ulations, presenting them to participants in the order in which they
have been shown to induce CT and also trace learning. A pilot
investigation will explore whether a bias change will occur under
the passive viewing methodology described earlier or whether
participants will be required to actively engage in the task to
ensure that their attention on the task is maintained. If so, the task
will resemble a modified version of Penton-Voak et al. (2013),
where participants were asked to rate facial expressions to deter-
mine their baseline emotional bias. However, the learning will still
remain unsupervised in that no feedback will be given. Using our
stimuli and the required presentation order, we will investigate
whether the predicted bias change will occur and also whether a
concurrent reduction in clinical symptoms arises. Thus, there are
important clinical implications of the current modeling work in
helping clinical investigators design and implement novel and
more optimal CBM interventions.

We also believe that the development of well-specified compu-
tational models helps to guide future research aimed at optimizing
the effectiveness of CBM interventions. For example, the simula-
tions presented in this article utilized either CT learning or trace
learning, but not both together, to effect a shift in the cognitive bias
from negative to positive. On the other hand, psychophysical
studies have shown that human subjects bind together different
images onto a single categorical representation using a mixture of
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both spatial continuity and temporal continuity (Perry et al., 2006).
Wallis and Biilthoff (2001) have also shown that both spatial and
temporal continuity seem to play a key role for modifying recog-
nition memory. In addition, a recent modeling study has predicted
that invariance learning in the primate ventral visual pathway may
be most effective when CT learning and trace learning are com-
bined together simultaneously (Spoerer, Eguchi, & Stringer,
2016). Therefore, in future work we will investigate CBM training
methodologies that combine together both CT learning and trace
learning simultaneously for maximum therapeutic effect. Further-
more, the future work could look at other types of learning, such
as reinforcement learning, to optimize CBM procedures using
feedback.

We will also explore various architectural extensions to the
model, to more accurately reflect the known neuroanatomy of
relevant brain areas. One such extension could be the addition of
a biased competition account. Based on this theory, Mathews and
Mackintosh (1998) proposed a model to explain the negative
interpretative biases of emotionally ambiguous expressions in
high-trait anxious patients. In their scenario, the competition was
between alternate interpretations of emotionally ambiguous stimuli
(e.g., sad and happy), similar to the basis of the mechanism
proposed in our current study. However, they also included a
top-down threat-detecting signal from the amygdala and a cogni-
tive control signal from the rostral anterior cingulate cortex
(rACC) and lateral prefrontal cortex (LPFC; Bishop, 2007) to
implement the biased competition. As a result, the negative inter-
pretation was more likely to win the competition when such biased
signals were present (Mathews & Mackintosh, 1998).

Their model does not necessarily exclude any other mechanism
that may influence the relevant representations developed in the
earlier stages of visual processing. The current study investigated
the potential mechanism to modify such neural representations of
affective visual inputs developed at the earlier stages. Therefore,
the model of amygdala—prefrontal circuitry with biased competi-
tion (Mathews & Mackintosh, 1998) is not mutually exclusive with
the model proposed in the current study but instead is compatible
and rather complementary. Our model provides the theoretical
front end of the competition account, before such top-down signals
are explored.

Although it does not simulate the rostral regions further than IT,
Deco and Rolls (2005) previously presented a single unified model
of hierarchical processing with attentional modulation mechanisms
via backprojection in VisNet. In terms of physiology, there exist
bidirectional connections between TE and the further rostral areas
such as amygdala and orbitofrontal cortex. Grabenhorst and Rolls
(2010, 2011) proposed that these connections may form autoasso-
ciative networks, which are suitable for implementing the biased
competitions. With such extensions of the model, it is possible to
further investigate how prioritized emotional signals from earlier
stages of visual processing may influence the nature of competi-
tion in the latter stages, where signals from IT and areas such as
amygdala and ACC meet. This would provide deeper insight into
a more accurate account that guides the development of more
effective CBM-Interpretation training procedures.

The purpose of CBM interventions, after all, is to retrain a
response to stimuli. One interesting question to ask is whether the
process of acquiring and removing biases shares similar mecha-
nisms. In the current study, we presented two potential mecha-

nisms to enhance the CBM-I intervention without active training
but simply by presenting carefully designed sequences of the
artificial visual inputs to the network. Because the original nega-
tive biases of patients also occur without requiring active training,
it might be that the proposed mechanisms also bear some relation
to the causative process of acquiring negative biases.
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Correction to Eguchi et al. (2016)

In the article “Understanding the Neural Basis of Cognitive Bias Modification as a Clinical
Treatment for Depression” by Akihiro Eguchi, Daniel Walters, Nele Peerenboom, Hannah Dury,
Elaine Fox, and Simon Stringer (Journal of Consulting and Clinical Psychology, Advance online
publication. December 19, 2016. http://dx.doi.org/10.1037/ccp0000165), there was an error in the
Discussion section’s first paragraph for Implications and Future Work. The in-text reference
citation for Penton-Voak et al. (2013) was incorrectly listed as “Blumenfeld, Preminger, Sagi, and
Tsodyks (2006)”. All versions of this article have been corrected.
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